Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*
* blk-mq scheduling framework
*
* Copyright (C) 2016 Jens Axboe
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"
void blk_mq_sched_free_hctx_data(struct request_queue *q,
void (*exit)(struct blk_mq_hw_ctx *))
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (exit && hctx->sched_data)
exit(hctx);
kfree(hctx->sched_data);
hctx->sched_data = NULL;
}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
int (*init)(struct blk_mq_hw_ctx *),
void (*exit)(struct blk_mq_hw_ctx *))
{
struct blk_mq_hw_ctx *hctx;
int ret;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
if (!hctx->sched_data) {
ret = -ENOMEM;
goto error;
}
if (init) {
ret = init(hctx);
if (ret) {
/*
* We don't want to give exit() a partially
* initialized sched_data. init() must clean up
* if it fails.
*/
kfree(hctx->sched_data);
hctx->sched_data = NULL;
goto error;
}
}
}
return 0;
error:
blk_mq_sched_free_hctx_data(q, exit);
return ret;
}
EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
static void __blk_mq_sched_assign_ioc(struct request_queue *q,
struct request *rq, struct io_context *ioc)
{
struct io_cq *icq;
spin_lock_irq(q->queue_lock);
icq = ioc_lookup_icq(ioc, q);
spin_unlock_irq(q->queue_lock);
if (!icq) {
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
if (!icq)
return;
}
rq->elv.icq = icq;
if (!blk_mq_sched_get_rq_priv(q, rq)) {
rq->rq_flags |= RQF_ELVPRIV;
get_io_context(icq->ioc);
return;
}
rq->elv.icq = NULL;
}
static void blk_mq_sched_assign_ioc(struct request_queue *q,
struct request *rq, struct bio *bio)
{
struct io_context *ioc;
ioc = rq_ioc(bio);
if (ioc)
__blk_mq_sched_assign_ioc(q, rq, ioc);
}
struct request *blk_mq_sched_get_request(struct request_queue *q,
struct bio *bio,
unsigned int op,
struct blk_mq_alloc_data *data)
{
struct elevator_queue *e = q->elevator;
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
struct request *rq;
blk_queue_enter_live(q);
ctx = blk_mq_get_ctx(q);
hctx = blk_mq_map_queue(q, ctx->cpu);
blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx);
if (e) {
data->flags |= BLK_MQ_REQ_INTERNAL;
/*
* Flush requests are special and go directly to the
* dispatch list.
*/
if (!op_is_flush(op) && e->type->ops.mq.get_request) {
rq = e->type->ops.mq.get_request(q, op, data);
if (rq)
rq->rq_flags |= RQF_QUEUED;
} else
rq = __blk_mq_alloc_request(data, op);
} else {
rq = __blk_mq_alloc_request(data, op);
if (rq)
data->hctx->tags->rqs[rq->tag] = rq;
}
if (rq) {
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
rq->elv.icq = NULL;
if (e && e->type->icq_cache)
blk_mq_sched_assign_ioc(q, rq, bio);
}
data->hctx->queued++;
return rq;
}
blk_queue_exit(q);
return NULL;
}
void blk_mq_sched_put_request(struct request *rq)
{
struct request_queue *q = rq->q;
struct elevator_queue *e = q->elevator;
if (rq->rq_flags & RQF_ELVPRIV) {
blk_mq_sched_put_rq_priv(rq->q, rq);
if (rq->elv.icq) {
put_io_context(rq->elv.icq->ioc);
rq->elv.icq = NULL;
}
}
if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
e->type->ops.mq.put_request(rq);
else
blk_mq_finish_request(rq);
}
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
struct elevator_queue *e = hctx->queue->elevator;
LIST_HEAD(rq_list);
if (unlikely(blk_mq_hctx_stopped(hctx)))
return;
hctx->run++;
/*
* If we have previous entries on our dispatch list, grab them first for
* more fair dispatch.
*/
if (!list_empty_careful(&hctx->dispatch)) {
spin_lock(&hctx->lock);
if (!list_empty(&hctx->dispatch))
list_splice_init(&hctx->dispatch, &rq_list);
spin_unlock(&hctx->lock);
}
/*
* Only ask the scheduler for requests, if we didn't have residual
* requests from the dispatch list. This is to avoid the case where
* we only ever dispatch a fraction of the requests available because
* of low device queue depth. Once we pull requests out of the IO
* scheduler, we can no longer merge or sort them. So it's best to
* leave them there for as long as we can. Mark the hw queue as
* needing a restart in that case.
*/
if (!list_empty(&rq_list)) {
blk_mq_sched_mark_restart(hctx);
blk_mq_dispatch_rq_list(hctx, &rq_list);
} else if (!e || !e->type->ops.mq.dispatch_request) {
blk_mq_flush_busy_ctxs(hctx, &rq_list);
blk_mq_dispatch_rq_list(hctx, &rq_list);
} else {
do {
struct request *rq;
rq = e->type->ops.mq.dispatch_request(hctx);
if (!rq)
break;
list_add(&rq->queuelist, &rq_list);
} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
}
}
void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
struct list_head *rq_list,
struct request *(*get_rq)(struct blk_mq_hw_ctx *))
{
do {
struct request *rq;
rq = get_rq(hctx);
if (!rq)
break;
list_add_tail(&rq->queuelist, rq_list);
} while (1);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
struct request **merged_request)
{
struct request *rq;
int ret;
ret = elv_merge(q, &rq, bio);
if (ret == ELEVATOR_BACK_MERGE) {
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (bio_attempt_back_merge(q, rq, bio)) {
*merged_request = attempt_back_merge(q, rq);
if (!*merged_request)
elv_merged_request(q, rq, ret);
return true;
}
} else if (ret == ELEVATOR_FRONT_MERGE) {
if (!blk_mq_sched_allow_merge(q, rq, bio))
return false;
if (bio_attempt_front_merge(q, rq, bio)) {
*merged_request = attempt_front_merge(q, rq);
if (!*merged_request)
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
elv_merged_request(q, rq, ret);
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.mq.bio_merge) {
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
blk_mq_put_ctx(ctx);
return e->type->ops.mq.bio_merge(hctx, bio);
}
return false;
}
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
void blk_mq_sched_request_inserted(struct request *rq)
{
trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
if (rq->tag == -1) {
rq->rq_flags |= RQF_SORTED;
return false;
}
/*
* If we already have a real request tag, send directly to
* the dispatch list.
*/
spin_lock(&hctx->lock);
list_add(&rq->queuelist, &hctx->dispatch);
spin_unlock(&hctx->lock);
return true;
}
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
if (blk_mq_hctx_has_pending(hctx))
blk_mq_run_hw_queue(hctx, true);
}
}
void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
{
unsigned int i;
if (!(hctx->flags & BLK_MQ_F_TAG_SHARED))
blk_mq_sched_restart_hctx(hctx);
else {
struct request_queue *q = hctx->queue;
if (!test_bit(QUEUE_FLAG_RESTART, &q->queue_flags))
return;
clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags);
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_sched_restart_hctx(hctx);
}
}
/*
* Add flush/fua to the queue. If we fail getting a driver tag, then
* punt to the requeue list. Requeue will re-invoke us from a context
* that's safe to block from.
*/
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
struct request *rq, bool can_block)
{
if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
blk_insert_flush(rq);
blk_mq_run_hw_queue(hctx, true);
} else
blk_mq_add_to_requeue_list(rq, true, true);
}
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
bool run_queue, bool async, bool can_block)
{
struct request_queue *q = rq->q;
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx = rq->mq_ctx;
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
blk_mq_sched_insert_flush(hctx, rq, can_block);
return;
}
if (e && blk_mq_sched_bypass_insert(hctx, rq))
goto run;
if (e && e->type->ops.mq.insert_requests) {
LIST_HEAD(list);
list_add(&rq->queuelist, &list);
e->type->ops.mq.insert_requests(hctx, &list, at_head);
} else {
spin_lock(&ctx->lock);
__blk_mq_insert_request(hctx, rq, at_head);
spin_unlock(&ctx->lock);
}
if (run_queue)
blk_mq_run_hw_queue(hctx, async);
}
void blk_mq_sched_insert_requests(struct request_queue *q,
struct blk_mq_ctx *ctx,
struct list_head *list, bool run_queue_async)
{
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
struct elevator_queue *e = hctx->queue->elevator;
if (e) {
struct request *rq, *next;
/*
* We bypass requests that already have a driver tag assigned,
* which should only be flushes. Flushes are only ever inserted
* as single requests, so we shouldn't ever hit the
* WARN_ON_ONCE() below (but let's handle it just in case).
*/
list_for_each_entry_safe(rq, next, list, queuelist) {
if (WARN_ON_ONCE(rq->tag != -1)) {
list_del_init(&rq->queuelist);
blk_mq_sched_bypass_insert(hctx, rq);
}
}
}
if (e && e->type->ops.mq.insert_requests)
e->type->ops.mq.insert_requests(hctx, list, false);
else
blk_mq_insert_requests(hctx, ctx, list);
blk_mq_run_hw_queue(hctx, run_queue_async);
}
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
if (hctx->sched_tags) {
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
blk_mq_free_rq_map(hctx->sched_tags);
hctx->sched_tags = NULL;
}
}
int blk_mq_sched_setup(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
struct blk_mq_hw_ctx *hctx;
int ret, i;
/*
* Default to 256, since we don't split into sync/async like the
* old code did. Additionally, this is a per-hw queue depth.
*/
q->nr_requests = 2 * BLKDEV_MAX_RQ;
/*
* We're switching to using an IO scheduler, so setup the hctx
* scheduler tags and switch the request map from the regular
* tags to scheduler tags. First allocate what we need, so we
* can safely fail and fallback, if needed.
*/
ret = 0;
queue_for_each_hw_ctx(q, hctx, i) {
hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
if (!hctx->sched_tags) {
ret = -ENOMEM;
break;
}
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
if (ret)
break;
}
/*
* If we failed, free what we did allocate
*/
if (ret) {
queue_for_each_hw_ctx(q, hctx, i) {
if (!hctx->sched_tags)
continue;
blk_mq_sched_free_tags(set, hctx, i);
}
return ret;
}
return 0;
}
void blk_mq_sched_teardown(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_sched_free_tags(set, hctx, i);
}
int blk_mq_sched_init(struct request_queue *q)
{
int ret;
#if defined(CONFIG_DEFAULT_SQ_NONE)
if (q->nr_hw_queues == 1)
return 0;
#endif
#if defined(CONFIG_DEFAULT_MQ_NONE)
if (q->nr_hw_queues > 1)
return 0;
#endif
mutex_lock(&q->sysfs_lock);
ret = elevator_init(q, NULL);
mutex_unlock(&q->sysfs_lock);
return ret;
}