
Towards Deterministic Rounding Behaviour in Quantized
Convolutions

(A design-note-in-progress) 9-Nov-2018

Greg Smith smithg@qti.qualcomm.com

1 Introduction
This document discusses the specification of our 8-bit and 16-bit quantization mechanism, and proposes a minor
adjustment which will support, under a reasonable set of conditions, bit-reproducible rounding in convolution
operations (i.e. exactly the same results can be reproduced by an independent implementation). This can be
useful when network designers wish to include compensation for run-time rounding errors as part of network
training, and thus need to model those errors exactly.

To illustrate, consider an 8x8→8 convolution with 32-bit biases, for the case where the output quantization range
is predetermined (and weights and biases are pre-quantized).

This operation can be broken down as these steps:

• A convolution, processed as integer operations on the quantized inputs

• Addition of bias values; the scaling of these depends on quantization

• An offset, scaling, saturation operation which generates the final output. The scaling and offset are

functions of the input and output scaling, and the operation itself can be expressed in simple integer
calculation (add, multiply, right-shift, saturate).

A goal of this document is to develop a recommendation which allows the result of the process to be
reproducible exactly in another implementation, provided:

• The quantization ranges of the input, output, and weights comply with the recommendations below (and,

of course, match exactly across the two implementations);

• The 32-bit bias values are encoding using a quantization step which matches in_step * weight_step * k

(calculated as a floating point result) where in_step and weight_step are the quantization steps of those
inputs, and k is a power of 2. This allows the scaling of the bias values to the operation to be
reproducible [This needs more work].

• The calculation and use of the scaling and offset values, for the convolution output, are done as

described below [yet to be added].

Confidential Qualcomm Inc Page 1 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

2 Terms
• Floating point or float refers to 32-bit IEEE floating point.

• Lossless refers to a computation done without no rounding, so that the actual result is the same

as the mathematically exact result. Integer multiply and adds are lossless. Floating point
overflow/underflow, and integer overflow, are not considered, and assumed not to occur by
design.

• Reproducible describes a computation which may have rounding errors, but from which we can

expect two implementations to produce identical results, provided the sequence of such
operations is adequately specified.

3 Quantization Overview

When storing “Quantized” data we use a finite number (e.g. 28 or 216) of integer codes to represent

continuous data; for a given set quantized values qi , we need to known the quantization parameters in order

to convert these to the 'dequantized' values x i they represent.

This is a simple linear relationship, and we have two ways to represent it:

• Scale and zero s, z:

x i = s(qi−z) (1)

• Nominal min and max α ,β :

x i = α+
β−α

N
qi (2)

Here, α is simply the dequantized value associated with quantized value q i=0 , and β is the value

associated with q i=N ; for 8-bit data we use N=255, so that α ,β represent the smallest and largest

possible x.

Conversions between the two forms may be made as follows:

s =
β −α

N
; z = −α

s (3)

α = −zs ; β = (N−z)s (4)

For reasons of computational convenience, we always require:

Confidential Qualcomm Inc Page 2 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

s>0 ; z∈ℤ; 0≤z≤N (5)

… which together imply: α≤0≤β ; α<β

i.e. the range may not be empty, and must include zero.

4 Lossless Conversion Between Representations
It is possible to restrict the allowed quantization parameters, in such a way as to guarantee that the computations
in (3)and (4) are lossless when performed in floating point.

4.1 8-bit Quantization, N=255:

By choosing a value of s which can be expressed in at most 16 mantissa bits (i.e. it can be expressed exactly as

s=k 2e where k ,e∈ℤ , 32768≤k≤65535) the operations in (4) are lossless when done in single-

precision floats, and the resulting α ,β are such that β−α is lossless and yields exactly 255 s; thus the

formulae for s and z in (3) will give the original value exactly (see section 7 regarding division by 255).

Also, with these constraints, it is possible to losslessly convert quantized data to float: either x i = s(q i−z) or

x i =α+ sqi may be used, and the conversion will be exact if done in IEEE floats.

Conversion from float to quant is lossy, of course; it may be useful to define a reproducible method based on a
given quantization specification, but currently I don’t have one and it may not be trivial to bring the existing
code to comply to a given specification – values which fall nearly or exactly halfway between two quantization
levels are at risk of being quantized differently in different implementations. Furthermore, the process of finding
a quantization spec to cover a given range of floats is not as yet defined in a reproducible form.

4.2 16-bit Quantization

For the 16-bit case, it’s possible to use N = 216−1 = 65535 , but in order to get the exact computations we

would need to generate min/max values which are representable in floats as differing by exact multiples of
65535, which is a problematic constraint when only 24 mantissa bits are available.

Instead we use N = 216
= 65536 , and continue to use (3) and (4) ; this means that α is still the

minimum representable value (code 0) but β is the ‘nominal’ maximum: the value which would be

represented by code 65536.

If we choose values of s which are representable in 22 mantissa bits, the multiplications in (4) to find α ,β

are generally not lossless, but if floating point operations are done with convergent rounding (the default mode)

the difference β−α in (3) will always1 give exactly 65536 s ; the multiplication by (1/N) is lossless

1 I don't have a proof for this, but testing over all 237
cases (all cases with a specific s exponent) found no failures.

Confidential Qualcomm Inc Page 3 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

and thus we can recover s exactly. The value of z found as z=−α/s can be inexact, but the worst absolute

error is about ±2−8 so z can be easily corrected by rounding to the nearest integer.

Dequantization of 16-bit floats should be done as x i=s (q i – z) where the subtraction is an exact integer

operation, the difference is converted losslessly to float, and the multiplication by s is lossy but reproducible.

5 Determining Quantization For a Given Range of Data

5.1 8-bit Quantization, N=255

Whenever we need to quantize a given range of floating point values {x i} , the following process is
recommended to find the quantization parameters:

• Find the actual range over {x i} , including zero:
xmin = min{0 , x0 , x1 , …}

xmax = max {0 , x0 , x1 , …}

• In the case where xmin=0 :
◦ set z = 0, and s = xmax /255

◦ If xmax=0 , all of the x i are zero and we can use an arbitrary value such as s=2−8

• Otherwise if xmax=0 :
◦ set z = 255, and s =−xmin /255

• Otherwise we need to find an integer zero point in 1...254, and scale which encompass the
desired range. This method finds the smallest feasible s:

◦ Find approximate value for the zero point, ẑ = −
255⋅xmin

xmax−xmin

 in range [0,255]

◦ Two candidate z values are the nearest integers z0 = ⌊ ẑ ⌋, z1 = z0+1

◦ Corresponding minimal s values are s0 = −
xmin

z0

, s1 =
xmax

255−z1

;

◦ use (s , z) = (s0 , z0) if z0>0 and (z1≥255 or s0<s1), otherwise use
(s , z) = (s1 , z1)

• In any case round the s value upward, if needed, to the next value which may be expressed in 16
mantissa bits.

• α ,β can be then found via (4); and it is guaranteed that the conditions in (5) are met, and
that α≤xmin , xmax≤β ; no solution with a smaller s exists.

Note that the condition s0<s1 can be evaluated as (z0−254) xmin < z0 xmax

This procedure can be used to “correct” a possibly unreliable (α ,β) range to a similar one which
meets the critera: if the (xmin , xmax) are set to the given (α ,β) , the new (α ,β) resulting will

Confidential Qualcomm Inc Page 4 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

include the original range; and should be identical to the original range when that already meets the
criteria (i.e. the process is idempotent).

However, the procedure is not considered to reproducible for arbitrary (xmin , xmax) ; in some cases,
slight differences in the way the computation is done could produce different choice of z, for instance,
when the s0 , s1 are very similar or identical.

Examples:
• (xmin , xmax)=(0, 1) ⇒ (s , z)=(0.003921628, 0) ⇒ (α , β)=(0, 1.0000151)

Here, s=0x8081×2−23 and β=0x80007F×2−23 exactly.

•

(xmin , xmax)=(−1, 1) ⇒ (s , z)=(0.0078742504, 128) ⇒ (α , β)=(−1.0079041, 1.0000298)

Here, s=0x8103×2−22 and α=−0x8103×2−15 , β=0x40007D×2−22 exactly. It's also
possible to use the same value of s, and z=127.

5.2 16-bit Quantization, N=65536

The method for finding scaling over a given range is below. This assumes that we don’t want xmax to map to

at most code 65535; we don't want it to map to 65536 and then be truncated to 65535. So we want a

quantization specification for which α≤xmin , xmax≤(β −s) .

• Find the actual range over {x i} , including zero:

xmin = min{0 , x0 , x1 , …}

xmax = max {0 , x0 , x1 , …}

• In the case where xmin=0 :

◦ set z = 0, and s = xmax /65535

◦ If xmax=0 , all of the x i are zero and we can use an arbitrary value such as s=2−16

• Otherwise if xmax=0 :

◦ set z = 65535, and s =−xmin /65535

• Otherwise we need to find an integer zero point in 1..65534, and scale which encompass the desired

range. This method finds the smallest s:

◦ Find approximate value for the zero point, ẑ = −
65535⋅xmin

xmax−xmin

(in range [0,65535])

◦ Two candidate z values are the nearest integers z0 = ⌊ ẑ ⌋, z1 = z0+1

Confidential Qualcomm Inc Page 5 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

◦ Corresponding minimal s values are s0 = −
xmin

z0

, s1 =
xmax

65535−z1

;

◦ use (s , z) = (s0 , z0) if z0>0 and (z1≥65535 or s0<s1), otherwise use

(s , z) = (s1 , z1)

• In any case round the s value upward, if needed, to the next value which may be expressed in 22

mantissa bits.

• α ,β can be then found via (4); and it is guaranteed that the conditions in (5) are met, and that

α≤xmin , xmax≤(β−s) ; no solution with a smaller s exists.

The condition s0<s1 can be evaluated as (z0−65534) xmin < z0 xmax

For the 8-bit case it is possible to have α<0, β=0 ; but for the 16-bit case z <=65535, so β≥s

Unlike the N=255 process, this is not idempotent – if resulting (α ,β) are used as (xmin , xmax) and the

process is run again, the new range will be larger.

Thus it should only be used to find a “new” nominal range to cover a given range of values, not to ‘correct’
existing nominal ranges.

Correcting an existing nominal range (i.e. modifying it as little as possible to meet conditions in (5), and the
constraint on s) can be done by the following idempotent method:

• find s,z using (3);

• round z to the nearest integer, limiting it to range 0..65535

• round s to the nearest value which can be expressed in 22 mantissa bits.

• Convert back to (α ,β) using (4)

Applying this correction to an arbitrary (α ,β) range may produce only a small change in the interpretation

of the quantized codes; mostly due to the rounding of z, which produces an offset of at most ±2−17
(β−α) .

In the special case where α=0 , the correction can be done by simply rounding β to the nearest value

which can be expressed in 22 mantissa bits, since in this case z=0 and β=216 s

Examples:
• (xmin , xmax)=(0, 1) ⇒ (s , z)=(1.5259029×10−5 , 0) ⇒ (α , β)=(0, 1.0000157)

Here, s=0x200021×2−37 and β=0x200021×2−21 exactly.

Confidential Qualcomm Inc Page 6 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

• (xmin , xmax)=(−1, 1) ⇒ (s , z)=(3.0518524×10−5 , 32768)

⇒ (α , β)=(−1.0000305, 1.0000305)
Here, s=0x200041×2−36 and α ,β=∓0x200041×2−21 exactly.

6 Final Rounding in Convolutions
For a convolution, or a matrix multiply, we want to find

y = x∗w + b

where the input values are actually represented by quantized values x̂ , ŵ , b̂ , defined by quantization

parameters

x = sx (x̂−zx) w = sw (ŵ−zw) b = sb(b̂−zb)

...and we want the output as ŷ such that y = s y (ŷ−z y) . All of the s* and z* are given.

(the details of the convolution subscripts and summation are omitted, since the discussion applies to any sum-of-
products operation).

Also, for now this discussion applies only to operations with 8-bit inputs and outputs.

First, we will find a integer convolution result as follows:

p̂ = (x̂−zx)∗(ŵ−zw)

This is a lossless integer operation, and it is clear that

y = s x sw p̂ + b

⇒ ŷ−z y =
sx sw

s y

p̂ +
1
s y

b

⇒ ŷ−z y =
sx sw

s y
(p̂ +

1
sx sw

b)
⇒ ŷ =

sx sw

λ s y
(λ p̂ +

λ sb

s x sw

(b̂−zb) +
λ s y

sx sw

z y)
(where λ is a scaling constant to be discussed below)

So the rest of the computation consists of:

• Scaling the bias: i.e. finding b̂p =
λ sb

sx sw

(b̂−zb) , rounding to nearest integer;

• Finding the output offset, Z p =
λ s y

sx sw

z y , and rounding it to the nearest integer

Confidential Qualcomm Inc Page 7 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

• Finding the overall scale S p =
s x sw

λ s y

in some fixed-point format.

• The result is then ŷ = S p (λ p̂ + b̂p + Z p)

λ is chosen as a power of 2, and is usually 1; so the multiplication by λ is actually a shift.

In most cases, S p is considerably less than zero even when λ=1 , so the process of rounding

Z p =
1
Sp

z y and b̂p to integer produces rounding errors which are small relative to the final rounding. In

situations where this is not true, it may be necessary to use a larger λ value to obtain a smaller S p , thus

diminishing the visibility of those rounding errors.

In order for this to be reproducible, we need to define the following in a way which makes them reproducible:

• How λ is chosen;

• How S p is calculated and rounded;

• How b̂p , Z p are calculated and rounded; and

• How the multiplication by S p is to be done.

[note – currently we support a λ in some of the convolutions, but it can't be used to control rounding errors

as above since it's applied to the full sum, not just the p term. It is used only to ensure S p<1]

… In progress....

The multiplication by S p is done by finding the full 64-bit product of the fixed-bit S p value and the final

sum; adding a rounding bias of 230 , and then shifting the result right 31 bits. The result is saturated so as not

to exceed the range 0...255.

7 Note: Division by 255 in floats
If a,b are floating-point values such that the float product p=255⋅b is lossless, and a=p, then the floating-

division a/(float)255.0 will yield exactly b, we rely on this to have exact conversion from (α ,β) to s in the

8-bit case.

If we choose instead to find a*(float)(1./255.0), to reduce computation time, the exact result is not guaranteed,
since (1/255.0) falls about midway between two representable values. The nearest float representation of

(1/255.0) is too large by 2.319×10−10 ; so if it happens that the multiplication rounds upwards, the result can

be inexact even though an exact quotient is representable. This can be avoided by doing the calculation as

b=r0 a + r1a , where r0=3.921568859×10−3 , r1=−2.3191758×10−10 ; the operation should

Confidential Qualcomm Inc Page 8 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

be done using a ‘fused multiply-add’ so the larger product is not fully rounded before the smaller is
added.

Confidential Qualcomm Inc Page 9 of 9

