Towards Deterministic Rounding Behaviour in Quantized

1

Convolutions
(A design-note-in-progress) 9-Nov-2018

Greg Smith smithg@qti.qualcomm.com

Introduction

This document discusses the specification of our 8-bit and 16-bit quantization mechanism, and proposes a minor
adjustment which will support, under a reasonable set of conditions, bit-reproducible rounding in convolution

operations (i.e. exactly the same results can be reproduced by an independent implementation). This can be

useful when network designers wish to include compensation for run-time rounding errors as part of network
training, and thus need to model those errors exactly.

To illustrate, consider an 8x8 — 8 convolution with 32-bit biases, for the case where the output quantization range

is predetermined (and weights and biases are pre-quantized).

This operation can be broken down as these steps:

A convolution, processed as integer operations on the quantized inputs
Addition of bias values; the scaling of these depends on quantization

An offset, scaling, saturation operation which generates the final output. The scaling and offset are
functions of the input and output scaling, and the operation itself can be expressed in simple integer
calculation (add, multiply, right-shift, saturate).

A goal of this document is to develop a recommendation which allows the result of the process to be
reproducible exactly in another implementation, provided:

The quantization ranges of the input, output, and weights comply with the recommendations below (and,
of course, match exactly across the two implementations);

The 32-bit bias values are encoding using a quantization step which matches in_step * weight_step * k
(calculated as a floating point result) where in_step and weight_step are the quantization steps of those
inputs, and k is a power of 2. This allows the scaling of the bias values to the operation to be
reproducible [This needs more work].

The calculation and use of the scaling and offset values, for the convolution output, are done as
described below [yet to be added].

Confidential Qualcomm Inc Page 1 0of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

2 Terms
* Floating point or float refers to 32-bit IEEE floating point.
* Lossless refers to a computation done without no rounding, so that the actual result is the same
as the mathematically exact result. Integer multiply and adds are lossless. Floating point

overflow/underflow, and integer overflow, are not considered, and assumed not to occur by
design.

* Reproducible describes a computation which may have rounding errors, but from which we can
expect two implementations to produce identical results, provided the sequence of such
operations is adequately specified.

3 Quantization Overview

When storing “Quantized” data we use a finite number (e.g. 2° or 2%) of integer codes to represent
continuous data; for a given set quantized values q; , we need to known the quantization parameters in order

to convert these to the 'dequantized’ values X, they represent.

This is a simple linear relationship, and we have two ways to represent it:

e Scale and zero s, z:

x; = s(q—2) €y
* Nominal min and max «,

: &0)

Here, « issimply the dequantized value associated with quantized value q,=0 ,and f is the value
associated with q,;=N ; for 8-bit data we use N=255, so that «, 3 represent the smallest and largest

possible x.

Conversions between the two forms may be made as follows:

s = ; oz = —% (3)

a = —zs; B = (N-z)s (4)

For reasons of computational convenience, we always require:

Confidential Qualcomm Inc Page 2 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

s>0; zeZ; 0<z<N (5)

... which together imply: a<0<p; a<pf

i.e. the range may not be empty, and must include zero.

4 Lossless Conversion Between Representations

It is possible to restrict the allowed quantization parameters, in such a way as to guarantee that the computations
in (3)and (4) are lossless when performed in floating point.

4.1 8-bit Quantization, N=255:
By choosing a value of s which can be expressed in at most 16 mantissa bits (i.e. it can be expressed exactly as
s=k2° where k,e€Z , 32768<k<65535) the operations in (4) are lossless when done in single-

precision floats, and the resulting «,f are suchthat f—a islossless and yields exactly 255 s; thus the
formulae for s and z in (3) will give the original value exactly (see section 7 regarding division by 255).

Also, with these constraints, it is possible to losslessly convert quantized data to float: either X, = s(qi— z) or

X; = a+sq; may be used, and the conversion will be exact if done in IEEE floats.

Conversion from float to quant is lossy, of course; it may be useful to define a reproducible method based on a
given quantization specification, but currently I don’t have one and it may not be trivial to bring the existing
code to comply to a given specification — values which fall nearly or exactly halfway between two quantization
levels are at risk of being quantized differently in different implementations. Furthermore, the process of finding
a quantization spec to cover a given range of floats is not as yet defined in a reproducible form.

4.2 16-bit Quantization

For the 16-bit case, it’s possible touse N = 2'°~1 =65535 , but in order to get the exact computations we
would need to generate min/max values which are representable in floats as differing by exact multiples of
65535, which is a problematic constraint when only 24 mantissa bits are available.

Instead we use N = 2'® = 65536 , and continue to use (3) and (4) ; this means that ¢« is still the
minimum representable value (code 0) but £ is the ‘nominal’ maximum: the value which would be
represented by code 65536.

If we choose values of s which are representable in 22 mantissa bits, the multiplications in (4) to find «, f
are generally not lossless, but if floating point operations are done with convergent rounding (the default mode)
the difference ff—a in (3) will always' give exactly 655365 ; the multiplication by (1/N) is lossless

1 Idon't have a proof for this, but testing over all 2% cases (all cases with a specific s exponent) found no failures.

Confidential Qualcomm Inc Page 3 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

and thus we can recover s exactly. The value of z found as z=—a./s can be inexact, but the worst absolute

error is about +2° soz can be easily corrected by rounding to the nearest integer.

Dequantization of 16-bit floats should be done as x,=s (q —z) where the subtraction is an exact integer

operation, the difference is converted losslessly to float, and the multiplication by s is lossy but reproducible.

5 Determining Quantization For a Given Range of Data

5.1 8-bit Quantization, N=255
Whenever we need to quantize a given range of floating point values {x;| , the following process is
recommended to find the quantization parameters:
 Find the actual range over (x;} , including zero:
Xpn = min{0, Xy, X,, ...}
Xpoe = max{0, X, X;, ...}
* Inthe case where x,,,=0
o setz=0,and s = x,,/255
o If x,,=0 ,allofthe x, arezeroandwe can use an arbitrary value suchas s=2"°
* Otherwiseif x,,=0
o setz=255and s=—x,,,/255
* Otherwise we need to find an integer zero point in 1...254, and scale which encompass the

desired range. This method finds the smallest feasible s:
255-x, ..

o Find approximate value for the zero point, z = ——————— inrange [0,255]
X —X

max min
o Two candidate z values are the nearest integers z,=|z], z, = z,+1

_ Xmin Xmax

© Corresponding minimal s values are s, = ———, s, = SeE—7. ;
-z
1

o use (s,z)=(s,,z,) if 2z,>0 and(z,2255 or s,<s,),otherwise use

(s, 2)=(s,, 2,)
* In any case round the s value upward, if needed, to the next value which may be expressed in 16

mantissa bits.
. a, 5 can be then found via (4); and it is guaranteed that the conditions in (5) are met, and

that a<x,,, X,.x<p ;no solution with a smaller s exists.
Note that the condition s,<s, canbe evaluated as (z,—254)x,,, < Zy X,

This procedure can be used to “correct” a possibly unreliable (c,) range to a similar one which
meets the critera: if the (x,. ,x,) aresettothe given (a,f) ,thenew (a,B) resulting will

Confidential Qualcomm Inc Page 4 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

include the original range; and should be identical to the original range when that already meets the
criteria (i.e. the process is idempotent).

However, the procedure is not considered to reproducible for arbitrary (x_. ,x,) ;insome cases,

slight differences in the way the computation is done could produce different choice of z, for instance,
when the s,,s, are very similar or identical.

Examples:
* (Xpins Xmax)=(0, 1) = (s, 2)=(0.003921628, 0) = (o, p)=(0, 1.0000151)
Here, s=0x8081x2 > and B=0x80007Fx2 * exactly.

(Xmins» Xmax)=(—1, 1) = (s, z)=(0.0078742504, 128) = (o, f)=(—1.0079041, 1.0000298)
Here, s=0x8103x2* and o=-0x8103x2"", p=0x40007Dx2 > exactly. It's also
possible to use the same value of s, and z=127.

5.2 16-bit Quantization, N=65536

The method for finding scaling over a given range is below. This assumes that we don’t want X to map to

max

at most code 65535; we don't want it to map to 65536 and then be truncated to 65535. So we want a
quantization specification for which a=<x,., xmaxs(B—s)

* Find the actual range over {x,] , including zero:
Xpmn = min{0, Xx,, X, ...}
Xpox = max{0, x,, X, ...}

=0

min™

¢ Inthe case where Xx

o setz=0,and s = Xx,,,/65535

. -16
o If x,,=0 ,allofthe x; arezeroand we can use an arbitrary value suchas s=2

¢ Otherwiseif x__.=0

max —

o setz=65535and S=—x,,;/65535

* Otherwise we need to find an integer zero point in 1..65534, and scale which encompass the desired
range. This method finds the smallest s:

: : s 65535 Xmin .
o Find approximate value for the zero point, z = ————— (inrange [0,65535])
X —X

max min

o Two candidate z values are the nearest integers z,=|z], z, = z,+1

Confidential Qualcomm Inc Page 5 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

. .. _ Xmin X
© Corresponding minimal s values are s, = ———, s; —_—
Z, 65535—z,

max

© use (S, Z) =(SO, ZO) if z,>0 and(2z,265535 or s,<s;),otherwise use
(S, Z) = (51’ Zl)

* In any case round the s value upward, if needed, to the next value which may be expressed in 22
mantissa bits.

. a, 3 can be then found via (4); and it is guaranteed that the conditions in (5) are met, and that

0= X,in> Xmax= ([3—5) ; no solution with a smaller s exists.

max—

The condition s,<s, canbe evaluatedas (z,—65534)x,,,, < Zy X0

For the 8-bit case it is possible to have a<0, =0 ; but for the 16-bit case z <=65535,s0 =5

Unlike the N=255 process, this is not idempotent — if resulting (&, 8) areusedas (x,,,X,,) and the

process is run again, the new range will be larger.

Thus it should only be used to find a “new” nominal range to cover a given range of values, not to ‘correct’
existing nominal ranges.

Correcting an existing nominal range (i.e. modifying it as little as possible to meet conditions in (5), and the
constraint on s) can be done by the following idempotent method:

* find s,z using (3);

* round z to the nearest integer, limiting it to range 0..65535

* round s to the nearest value which can be expressed in 22 mantissa bits.
+ Convertbackto (o, B) using (4)

Applying this correction to an arbitrary (oc s [3) range may produce only a small change in the interpretation

of the quantized codes; mostly due to the rounding of z, which produces an offset of at most i2_17([3—0c)

In the special case where =0 , the correction can be done by simply rounding £ to the nearest value

which can be expressed in 22 mantissa bits, since in this case z=0 and 62216 S

Examples:
o (Xpims Xma)=(0, 1) = (s, 2)=(1.5259029%107°,0) = (a, f)=(0, 1.0000157)
Here, s=0x200021x2"> and p=0x200021x2*' exactly.

Confidential Qualcomm Inc Page 6 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

o (Xpin» Xmar)=(=1, 1) = (s, 2)=(3.0518524x10°, 32768)
= (o, B)=(—1.0000305, 1.0000305)
Here, s=0x200041x2* and o,BF=70x200041x2*" exactly.

6 Final Rounding in Convolutions
For a convolution, or a matrix multiply, we want to find

y = xxw+b
where the input values are actually represented by quantized values X, W, b , defined by quantization
parameters
x = s(%-z,) w=s,(Ww-z,) b =s,(b-z)
...and we want the outputas § suchthat y = s y(§f—zy) .All of the s, and z. are given.

(the details of the convolution subscripts and summation are omitted, since the discussion applies to any sum-of-

products operation).

Also, for now this discussion applies only to operations with 8-bit inputs and outputs.
First, we will find a integer convolution result as follows:

p = (R-z,)*(W-z,)

This is a lossless integer operation, and it is clear that

— A
y = stwp+b
s, S 1
= §r—zy = ““p+—b>b
Sy S)'
=y-z, = —|p+ —b
S, .S,
R S.S R AS, ~ AS
>y = —|Ap + (b—z,) + ~z,
As, «Sw S, S,

(where A is ascaling constant to be discussed below)

So the rest of the computation consists of:

A NS, A
* Scaling the bias: i.e. finding b b = b (b—zb) , rounding to nearest integer;
SX SW
T 7\‘ Sy . . s
* Finding the output offset, Z, = z, , and rounding it to the nearest integer
SX SW

Confidential Qualcomm Inc Page 7 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

S.S
* Finding the overall scale S, = { ~ in some fixed-point format.

Sy

e Theresultisthen y = S, Ap + b, + Z,
A is chosen as a power of 2, and is usually 1; so the multiplication by A is actually a shift.

In most cases, S, is considerably less than zero even when A=1 |, so the process of rounding

Z, = 5 z, and b , tointeger produces rounding errors which are small relative to the final rounding. In
p

situations where this is not true, it may be necessary to use a larger A value to obtain a smaller S > thus

diminishing the visibility of those rounding errors.
In order for this to be reproducible, we need to define the following in a way which makes them reproducible:

e How A ischosen;

e How S p IS calculated and rounded;

A

 How b ? Z , are calculated and rounded; and

* How the multiplication by S, is to be done.

[note — currently we supporta A in some of the convolutions, but it can't be used to control rounding errors
as above since it's applied to the full sum, not just the p term. It is used only to ensure S ,<1 1

... In progress....

The multiplication by S, is done by finding the full 64-bit product of the fixed-bit S, value and the final

sum; adding a rounding bias of 2% and then shifting the result right 31 bits. The result is saturated so as not
to exceed the range 0...255.

7 Note: Division by 255 in floats

If a,b are floating-point values such that the float product p=255-b islossless, and a=p, then the floating-
division a/(float)255.0 will yield exactly b, we rely on this to have exact conversion from (oc s [3) to s in the
8-bit case.

If we choose instead to find a*(float)(1./255.0), to reduce computation time, the exact result is not guaranteed,
since (1/255.0) falls about midway between two representable values. The nearest float representation of

(1/255.0) is too large by 2.319X 10" ;soifit happens that the multiplication rounds upwards, the result can
be inexact even though an exact quotient is representable. This can be avoided by doing the calculation as

b=rya+r,a ,where r,=3.921568859x10"°> , r,=—2.3191758x10 " ; the operation should

Confidential Qualcomm Inc Page 8 of 9

Towards Determinisitic Rounding in Quantized Convolutions 9-Nov-2018

be done using a ‘fused multiply-add’ so the larger product is not fully rounded before the smaller is
added.

Confidential Qualcomm Inc Page 9 of 9

